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A Hybrid Method for the Calculation of the
Resistance and Inductance of Transmission

Lines with Arbitrary Cross Sections
Michael J. Tsuk, Member, IEEE, and Jin Au Kong, Fellow, IEEE

Abstract —The frequency-dependent resistance and induc-
tance of uniform transmission lines are calculated with a hybrid
technique that combines a cross-section coupled circuit method
with a surface integral equation approach. The coupled circuit

approach is most applicable for low-frequency calculations, while
the integral equation approach is best for high frequencies. The
low-frequency method consists in subdividing the cross section
of each conductor into triangular filaments, each with an as-

sumed uniform current distribution. The resistance and mutual
inductance between the filaments are calculated, and a matrix is
inverted to give the overall resistance and inductance of the

conductors. The high-frequency method expresses the resistance
and inductance of each conductor in terms of the current at the
surface of that conductor and the derivative of that current
normal to the surface. A coupled integral equation is then

derived to relate these quantities through the diffusion equation
inside the conductors and Laplace’s equation outside. The

method of moments with pulse basis functions is used to solve
the integral equations. An interpolation between the results of

these two methods gives very good results over the entire fre-
quency range, even when few basis functions are used. Results
for a variety of configurations are shown and are compared with

experimental data and other numerical techniques.

I. INTRODUCTION

w

ITH the ever-increasing speed and density of mod-

ern integrated circuits, the need for electromag-

netic wave analysis of phenomena such as the propagation

of transient signals, especially the distortion of signal

pulses, becomes crucial. One of the most important causes

of pulse distortion is the frequency dependence ,of con-

ductor loss, which can be incorporated into circuit models

for transmission lines as frequency-dependent resistance

and inductance per unit length. Experimental work mea-

suring the resistance and inductance of conductors has

concentrated on circular and rectangular cross sections.

Kennelly et al. [1]did a thorough experimental study,
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which was extended to higher frequencies by Kennelly

and Affel [2]. Haefner’s 1937 paper [3] represents the

most extensive experimental data on the resistance of

rectangular conductors with a wide variety of width-to-

thickness ratios. More recently, Weeks et al. [4] did simi-

lar work as part of a theoretical treatment of the problem.

In terms of theoretical work, the circular conductor was

the first case considered, since it allows an analytical

solution. Maxwell [5] examined nonperiodic current;

Kelvin [6] solved the periodic case. Carson [7] gave a

series solution for the two-wire proximity effect. Cock-

croft [8] used the Schwarz-Christoffel transformation to

obtain a high-frequency approximation to the skin effect

which was expressed in terms of elliptic integrals. Wheeler

[9] discussed the “incremental inductance” rule, which is

a high-frequency estimate of both the skin and proximity

effects. More recently, Casimir and Ubbink [10], [11]

presented an overview and summary of the basics of the

skin effect, with formulas for the high-frequency limits of

simple cases.

In the “filament technique,” the conductor (usually

rectangular) is divided into a large number of rectangular

filaments, which are considered to have uniform current

distribution within them. Graneau [12] uses a power-series

approach in frequency, which Weeks et al. [4] dispensed

with. Silvester expands the current in a flat conductor [13]

in a series of eigenmodes and the current in a conductor

of arbitrary shape [14] in filaments. In both cases he

ignores the effect of the placement of the return current,

or, in other words, the proximity effect. While these

filament methods tend to be very good for low frequen-

cies, since the current density is then almost uniform, they

do not model singularities of the current density at high

frequencies well.

The other class of methods involves solving the mag-

netic vector potential integral equation [15]–[21]. The

boundary condition is usually on the tangential magnetic

field, specified on a closed contour some distance from

the conductor. The integral equation is solved by tradi-

tional matrix methods, either by expanding the current in

a series of orthogonal eigenfunctions [15]–[18] or by divid-

ing the current into subdomain basis functions [19]–[21].

This method is limited in that it requires knowledge of

the magnetic field outside the conductor somewhere to
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calculate the current distribution inside but does not give

any general way to determine that field. The more recent

work of Cangellaris [-22] applies the boundary conditions

develclped in the filament approaches to the magnetic

vector potential integral equation, thus removing one of

the p~incipal difficulties of that method; however, it still

requires modeling of the current throughout the cross

section.

In recent years, new methods have been developed

which require modeling the current distribution only on

the surface of the wires, rather than throughout the cross

section. Djordjevi6 et al. [23] assumed a nonphysical dis-

tribut ion of ,current along the propagation direction, which

led to an excess resistance at high frequencies. Their work

was modified by Wu and Yang [24] to allow appropriate

quasi-TEM propagation. However, since both of these

methods depend on the calculation of the normal deriva-

tive of the current density, they have numerical difficul-

ties at low frequencies, when the current is almost uni-

form and the normal derivative is small.

The technique presented in this paper is hybrid cross-

sectio,n coupled circuit/surface integral equation ap-

proach, For low frequencies, a filament method based on

the work of Weeks et al. is used, except with triangular

rather than rectangular patches. For high frequencies, a

surface integral equation method is used. However, in

contrast to previous work, the calculation of resistance

and inductance is based on power dissipation’ and stored

magnetic energy, rather than on impedance ratios. It will

therefore be more easily extended to structures where

nonuniform propagation can occur. In the middle range

of frequency, an interpolation is made between the results

of th~e two methods. Since this is a frequency-domain

method, we will assume an e – ‘“~ dependence to all quan-

tities.

11. CROSS-SECTION COUPLED CIRCUIT METHOD

For low frequencies, we use a two-dimensional cross-

section coupled circuit method to find the resistance and

inductance matrices for multiple transmission lines with

unifctrm cross sections. We assume that these transmis-

sion lines consist

path or “ground

defined by

of signal lines over a common return

plane.” The matrices ~ and ~ are

(1)

where V is the column vector of the voltage differences

between the wires and a reference wire (ground plane or

return conductor), and 1 is the column vector of currents

flowing in the wires.
Here is an overview of the cross-section coupled circuit

method. Each conductor is divided into triangular patches

and one of the patches from the return conductor is

chosen to be the reference. The current is assumed uni-

form on the cross section of each patch; in other words, a

piecewise-constant approximation to the actual current

distribution is used. The resistance and inductance matri-

ces for the patches (~ and ~) are then calculated, where

these matrices are defined by

(’2)

where v is the column vector of the voltage differences

between the patches and the reference patch, and L is the

column vector of currents flowing in the .2 direction

through the patches. There are two conditions on the

system: first, that the total current in each wire be the

sum of the currents in the patches and, second, that the

voltage on each patch in a wire be the same, since no

transverse currents are allowed under the quasi-TEM

assumption. Using these conditions, the matrices for the

patches can be reduced to the mat~ices for the wires.

For the calculation of ~ and 1, we follow [4] quite

closely. The elements of the resistance matrix of the

patches are

1 1
~jk, ]k = —+—

wAJk UA ~0

1
rjk, mn = — j+m, k+n

LZA~0 ‘

where the first subscript indicates the wire, the second

the patch within the wire; Ajk is the cross-sectional area

of patch k on wire j, and patch O on wire O is the

reference of voltage. Also following [4], the elements of

the inductance matrix can be written as the sum of partial

inductances:

where the partial inductances are given by

‘ln[(x- x’)2+(y-y’)2] (5)

where x and y are coordinates on patch jk, and x‘ and

y’ are coordinates on patch mn.

In the Weeks method, the patches over which the

integrals in (5) are done are rectangles, and the quadruple

integral is done quite easily in closed form. However, it is

also possible to evaluate the quadruple integral in closed

form for any polygonal shapes; the details are rather

complex and are left for the Appendix. We therefore use

triangular patches as the most flexible means of modeling

conductors with arbitrary cross sections; polygons are

covered exactly, and we are able to model quite closely

other shapes, such as circles.

Once the resistance and inductance matrices for the
patches have been obtained, we proceed in the following

manner. Taking

dv

‘z =-[ 1icoi-; “L=–; ”L. (6)

The matrix 2 is inverted, and ~ = ~-‘. Writing out the
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elements of the matrix,

(7)

where N is the number of wires and IVm is the number of

patches on wire m. The conditions on v and t discussed

above are applied, to give

(8)

where V and 1 are the voltage and current column vectors

for the wires and where

Inverting ~ gives

Thus, the frequency-dependent resistance

(9)

(lo)

and inductance

matrices for the wires have been obtained.

In [4], the distribution of patches was a function of

frequency; as the frequency increased, the patches were

concentrated at the edges, where the current is. However,

as shall be shown, it is more efficient to switch to a

surface integral equation technique for high frequencies;

in this paper the distribution of triangular patches is not

altered as the frequency is increased. This has the advan-

tage that, since the resistance and inductance matrices of

the patches are independent of frequency, ~ and j need

be calculated only once, no matter for how many frequen-

cies we wish to calculate ~ and ~.

III. DIFFERENTIAL EQUATIONS AND

BOUNDARY CONDITIONS

ln this section, the basic equations and boundary condi-

tions which will be used in the surface-integral equation

method will be derived. The coordinate system used is

shown in Fig. 1. We will rely heavily on quasi-TEM

assumptions. First, outside the wires, we assume that the

fields are transverse, and that they obey Laplace’s equa-

tion. In other words, Maxwell’s equations outside the

wires become

VXH=O (11)

V“H=O (12)

where V here is only the transverse operator, 2d/dx +
$d/dy. The vector magnetic potential, A, is defined such

that LLH = V X A. By the quasi-TEM assumption, J = 2JZ

and A = i?AZ, and it can be shown that

V2A2 = O. (13)

Also, inside the conductors, the displacement current is

ignored; Maxwell’s equations become

VXE=itipH (14)

VXH=J (15)

V.H=O. (16)

Fig. 1. Coordinate system for surface integral equation method.

Using J = oE, this reduces to

V2JZ + iwpwJZ = O. (17)

There are two boundary conditions at the interface of

the conductors and free space: the continuity of tangen-

tial H and of normal B = PH. If H outside is expressed

in terms of AZ, and H inside in terms of JZ, the condition

on H reduces to

which is satisfied along all the conductor–free space in-

terfaces. The boundary condition on normal B is more

difficult. Assuming that all the materials have the same

permeability,

(19)

If the derivatives of two quantities along a line are equal,

then those quantities must be equal, to within a constant:

Jz=itiu[AZ-A~]. (20)

Aq is constant over a single conductor, but can vary from

conductor to conductor.

Finally, it is necessary to be able to specify the total

current flowing on a wire. Using Green’s first identity,

where dS is a two-dimensional integral over a cross-sec-

tional area, and dl is a one-dimensional integral along the

closed contour bounding that area. Also, the normals are

defined as pointing out from the region of interest. With

@= J. and + = L and considering(17),

which is an expression for the total current flowing in a
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wire in the f direction in terms of quantities on the

surf ace.

IV. DETERMINATION OF CIRCUIT PARAMETERS

Eventually, the quantities of interest are the resistance

and inductance per unit length of these conductors. It

turns out that it is possible to express these quantities in

terms of the current and its normal derivative on the

surface of the wires. This is useful, because it means that

the problem can be formulated in terms of a set of

coupled integral equations involving only these surface

quantities, allowing a great savings in computation. The

resistances and inductances will be derived through power

and energy considerations.

For the resistance, consider a case with a current 1

flowirlg in a signal wire and returning in a reference, for

example a ground plane. Starting with the power defini-

tion clf resistance,

2Pd JJ
dSEz J;

R=—=
1 MJ’I’—

1112
(23)

l//dSJz12 - ; l/~dSJz12

where the integration in the numerator is over all wires,

while that in the denominator is only over the signal wire.

The numerator can be put in a more useful form, using

(21) with @= Jz and @= J:, and its complex conjugate,

together with (17) to get

~jdNJ.12=f/dsJ.J;

li
—_——

2 lopu JJ [dS J; V2JZ – JzV2J~ ]

li

$[

ilJ*
.——

2 mpu
dl J;; –Jz~ 1

‘+$df1m(J=3”(24)

Including the total current squared, 1112,from (22),

$
i?J*

(}
dl Im Jz$

R = up ‘ll ‘ire’ (25)

$

aJ. 2“
dl ~

signal wire

Similarly, starting with a magnetic stored energy defini-

tion of inductance per unit length, L:

4wm ~jdSH. H*
L=T=p

1112
(26)

where the range of integration for the numerator is over

all space. Using a technique similar to that for (25),

combining the contributions from regions inside and out-

side the wires,

L=–p
411Wr.YZRe(iouAq%} ,27)

2“

#
dl ~

signal wire

The mutual resistance and inductance are calculated

from energy considerations, and from the self terms calcu-

lated above. If we specify a current I. to flow on line i,

and – 1X to flow on line j, we can calculate the power

dissipated, P~, and the stored magnetic energy, Wn, very

easily by the above technique. This gives

Rij = ~(Ru+RJj–4pd/I;) (28’)

and

Lij = ; (L,t + L], –8W#3. (29)

V. DERIVATION OF COUPLED INTEGRAL EQUATIONS

In order to complete the formulation, integral equi~-

tions are required which relate A= to 5A= /&z outside the

wires and Jz to dJZ /tbz inside the wires. Starting fram
Green’s theorem:

where the integral dS’ is over a cross-sectional region, the

integral dl’ is over the contour bounding that region, and

the normals point out from the region of interest. In

general, let T(p) be either A= or Jz, where p is position

in the two-dimensional cross section. Since T(p) satisfies

V2W + CW = O, where C = O for Laplace’s equation and

C = iwpa for the diffusion equation, a Green’s function,

G(p, p’), can be found which satisfies V2G + CG =

– b(p – p’). Substituting ~ for * and G for @ in (30),

d W(p’) i?G(p, p’)
= dl’ G(P, P’)~– T(p’) ~n,

1
. (31)

The integral equation will be formulated on the surface,

so both p and p’ are on the surface. This places 8(P – p’)

just on the boundary of the dS’ integration, and this must

be treated carefully. The most straightforward method is

that integrating a delta function that lies on the edge of

the range of integration gives 1/2. With this,

$dl’G(l,l’)%

Integral equations for both A= and Jz can now be
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obtained. For the outer equation (13),

$
dAZ(l’)

dl’GO(l,l’)T
all wires

# [

r3Go(l,l’)
—— dl’Az(l’)

dn’ 1
– & 1’) (33)

all wires

where

1 [&~’) 2+(Y-Y’)2] (34)GO(p, p’) = – ~ in

and where the sign change in (33) is due to the normals

pointing into the region of interest. The range of integra-

tion is over the boundary of the free-space region, in

other words, over the surface of every wire.

Similarly, for the inner equation (17), for each wire,

$
dJZ(l’)

dl’Gi(l,l’)T
wire q

!$ [
r3G[(l,l’) 1

—— dl’Jz(l’)
f3n’ 1

+ p(l - 1’) (35)
wire q

where

GL(p, p’) = ~Hfl)(ei*/4m~(x – X’)2+(Y – y’)’)

=;[kerGJ(~-~f)2 +(Y-Y’)2

–ikei@ (x–x’)2+(y–y’)2] (36)

where “ker” and “kei” are the real and imaginary Kelvin

functions. This equation applies to each wire separately;

the range of integration is over the surface of that wire.

Using the boundary conditions (18) and (20) to elimi-

nate A= from the integral equation for the outside fields

and add the condition on the total currents from (22),

$
dJ.(1’)

dl’Go(l,l’) ~ =
$

dl’
all wires all wires

[

!

1~[Jz(l’) + iomA,] ‘G$;Z ) - ;8(1 - 1’) (37)

$

i?J.(1’)
dl’G1(Ll’)~=$ dl’Jz(l’)

wireq wireq

“[

r?Gi(l,l’) 1

i%’ 1
+ ~r3(l– 1’) (38)

$
dl ; = – tipo-1~.

wireq

(39)

There is one important thing to note about these inte-

gral equations. Contrary to simpler electrostatic prob-

lems, the boundary conditions are neither Dirichlet nor

Neumann; both G and 8G /i?n’ must be kept in the

equations. Because of this, the formulation is in terms of

the free-space Green’s functions for Laplace’s equation

and the diffusion equation, (34) and (36). All information

about the boundaries is contained in the paths of integra-

tion.

VI. SOLUTION OF COUPLED INTEGRAL EQUATIONS

We solve these coupled integral equations, (37), (38),

and (39), by the method of moments with subdomain basis

functions. Expanding the unknown functions J, and

dJZ \dn as the sum of known functions times unknown

coefficients,

J.= ~LAn(O (40)
m

(41)

Simple pulse basis functions are used, normalized so that

the integral is unity:

{
Bin(l) = p

ifl~<l<l~+An
(42)

otherwise.

This gives a piecewise-constant approximation to the sur-

face quantities. The same functions are used for testing,

thereby implementing Galerkin’s method.

It turns out that, for high frequencies, the current

distribution on a wire is similar to the charge distribution

on a perfect conductor. For polygonal wires, this means

that the current will be concentrated at the corners.

Therefore, we find it advantageous to concentrate the

basis functions in the same way. For three basis functions

on a side, for example, the two in the corners are each

one eight the length of the side; the center one, three

quarters. These values were determined empirically, by

seeing which division gave results closest to those for a

large number of basis functions.

We can thus approximate the coupled integral equation
as a matrix equation:

r= = =1
l~oRuo/r~lrOl

~; : ;]”[io:ol=hrff’]’43)
1 1

where J is the vector of the unknown jn’s (current), K is

the vector of the unknown km’s (normal derivative of the

current), and AO is the vector of the A q’s (constants of

vector potential). The total currents on each wire are

specified by the vector 1. The matrices PO, ~0, Do, ~, ~,—
and ~ arise from integrals of products of the Green’s

functions with the basis functions and are completely

known. The solution of this matrix equation by LU de-

composition provides us with an approximation for J= and

~Jz /dn, and throug~(25) and (27), R and L. Since the

outer matrices PO, UO, ~0, and ~, are independent of

frequency, they only need to be calculated once. We can

make use of this fact by LU-decomposing this part of the

large matrix only once, completing the decomposition

with the rest of the matrix for each value of frequency.

For the pulse basis functions used, the outer matrices can
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Hybrid Technique, (25)
I

Weeks’ Method, (49)

/

1’
Haefner [3]

/

/

100 1000

Frequency (Hz)

Fig. 2. Resistance of isolated square wire.

~e expressed in closed form. The inner matrices, Z. and

~, have, at worst, double numerical integrals, and for the

case of the interaction between elements which lie on the

same line, these can be expressed in closed form. Also, at

high frequencies, owing to the highly local nature of the

diffusion Green’s function (36), which results from the

rapidly decaying asymptotic nature of the Kelvin func-

tions, only the neighboring patches have an appreciable

intera~ction; those integrals can be calculated quite rapidly.

VII. RESULTS

In these results, we will compare the hybrid method,

described above, with experimental results, as well as with

two clther methods: the Weeks method [4], which models
the current throughout the cross section, and the work of

Djordjevi6 et al. [23], which models an equivalent current

only on the surface over all frequencies. As shall be seen,

by using a hybrid method, we can avoid the weaknesses of

both of these methods.

First, we consider the example of an isolated square

conductor, 4.62 mm on a side, with conductivity ~ = 5.72

x 10:’ (Q – m) – 1. While the inductance per unit length is

undefined, the hybrid method can be used to calculate

the resistance per unit length and for comparison with the

experimental results of Haefner [3] and the results ob-

tained by using the Weeks method [4]. As can be seen

(Fig. 2), the fit for the new method is quite good. In this
example, only 12 basis functions (25 unknowns) were

used, three on a side. By comparison, the Weeks method
with 49 basis functions does not give as good a result.

The next example is that of two parallel circular wires,
~ = 5.84x 107 (Q –m)–l. The wires have a diameter of

11.68 mm, and a separation of 0.3 mm and 8 mm for the

two cases. Here, the circles were modeled as n-sided

polygons having the same cross-sectional area. In Figs. 3

1-’’’’’’”‘ “’’” r“rx 0.3 mm, Kennelly et al. [1]
0.3mm, Hybrid Technique, (54)

1
---- 0.3mm, Series Solution

O 8mm, Kennelly et 01. [1]

2 —— 8mm, Hybrid Technique, (54)
. . . . 8mm, Series Solution {

1

I @-
I I 1

10 100 1000 104

600

400

200

0

Frequency (Hz)

Fig. 3. Resistance of two circular wires.

Ia’”! .—. _
9 .-

x

—.—
0

-—
. . .

‘:%3%

x—

“%
0.3 mm, Kennelly et al. [1]
0.3mm, Hybrid Technique, (54)
0.3mm, Series Solution
8mm, Kennelly et al. [1]
8mm, Hybrid Technique, (54)
8mm, Series Solution

I I ,
10 100 1000 10’

Frequency (Hz)

Fig. 4. Inductance of two circular wires.

and 4, the results for 13 basis functions per circle (!54

unknowns) are shown, compared with the experimental

results of Kennelly et al. [1]. The fit is again quite good

with the experimental results. Since the Weeks method is

limited to rectangular elements, it is not capable of han-

dling this case.

Next, we take the example of two parallel rectangular

wires, u = 5.6x 107 (Kl – m) – 1; the configuration is shovvn
in Fig. 5. In Figs. 6 and 7, we compare the hybrid method,

the Weeks method, and the results from [23] calculated

from a purely surface integral equation approach. It can

be seen that the hybrid method agrees with each of tlhe

others in its range of validity. Also, the numerical instabil-

ity of purely surface-integral equation methods in calcu-
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Case 1 Case II

Fig. 5. Two rectangular wires.

104 L I I I I I 1

1000 r

‘-?> ,
g
: 100 ,
K
0

;
(n
(% ,/’ — 1: Hybrid Technique (82)

10( ~ —e - @ –-– 1: weeks’ Method (509)
x 1: Ojordevic (82) [23]

.— 11:Hybrid Technique (82) :
. . . 11:Weeks’ Method, (449) -
0 11:Djordevic (1 30) [23]

1 I I i I I I I

100 1000 104 105 106 107 108 109 10’0

Frequency (Hz)

Fig. 6. Resistance of two rectangular wires.

lating the low-frequency inductance can be observed. It is

also clear that the hybrid method in general requires

fewer basis functions, and thus less computation time,

than the Weeks method. In fact, as the frequency in-

creases and the conductors become many skin depths

across, even a large number of basis functions in the

Weeks method leaves us with a significant error. This is

due to the inability of the Weeks method to correctly

model the distribution of current along the surface, which

is crucial to the calculation of resistance at such frequen-

cies. Tables I and 11 compare the results of the hybrid

method with the Weeks method for the case of two

square wires, including CPU times, on a Digital Equip-

ment Corporation VAXstation 3500, running VMS. As

can be seen, the cost of the hybrid method in terms of

CPU time is much lower than the Weeks method for
anything more than a moderate number of basis func-

tions, and especially for high frequencies.

Finally, we consider the case of three rectangular con-

ductors over a ground plane, u = 5.81X 107 (Q – m)-’.

The configuration is shown in Fig. 8, the resistance of the

first line in Fig. 9, and the self- and mutual inductances in

Fig. 10. Since our method is not capable of modeling an

infinite ground plane (since imaging is very difficult with

an imperfect conductor), a very large conductor was used,

4 mm by 0.5 mm, in its place, with more basis functions

concentrated in the area under the signal lines. We com-

pare with the Weeks method and with a purely surface

T 1 f 1 ) 1 1
— 1: Hybrid Technique (82)
- -– 1: Weeks’ Method (509)

x 1: Djordevic (82) [23]

600 -—-.—. – – 1[: Hybrid Technique (82) -

b. ---- 11:Weeks’ Method, (449)
\ 0 II: Ojordevic (1 30) [23]

~ \

I ‘by
&
al %--.* _&._*...
g

Zool—————l
100 1000 104 105 106 107 108 109 10’0

Frequency (Hz)

Fig. 7. Inductance of two rectangular wires.

+

Fig. 8. Three rectangular wires over a ground plane,

integral equation result, both with a large number of basis

functions. The same trend can be seen as in the previous

case, but there is now a large error in the high-frequency

inductance, as predicted by the Weeks method. This is

due to the fact that the Weeks method does not model

the concentration of the current on the ground plane

under the signal lines, since at high frequencies most of

the patches are concentrated at the corners of the ground

plane, far away from the current. If one improves the

Weeks method by restricting the majority of basis func-

tions to be under the signal lines, one gets results which

agree with the hybrid method quite closely.

VIII. CONCLUSIONS

A technique has been developed to calculate the skin
effect resistance and inductance of transmission lines with

arbitrary cross sections. This technique provides accurate

answers over a wide range of frequencies, including the

range where neither low-frequency (direct current, uni-

form distribution) nor high-frequency (skin depth) ap-

proximations are valid. The technique is a hybridization

of two distinct methods. The first is a cross-section cou-

pled circuit approach, subdividing the wires into triangu-

lar patches which are assumed to have uniform current

distribution. This method is best for low frequencies,

when the physical current has very little variation across

the cross section. The second method is in terms of a

coupled integral equation, linking the current and its
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TABLE I

RESULTSAND CPU TIMES FOR Two SQUAREWIRES WITH
HYBRID METHOD

Bask Number of Frequency CPU Time
Functions Unknowns (Hz) (m~/m) (nH?m) (s)

3x3 50 (Pret3rocessing) 12.99
102 8.929 599.5 1.35
~04 11.07 577.7 3.36
106 94.76 466.6 1.24

7X7 114 (Preprocessing) 19.16
102 8.929 599.5 1.37
~04 11.13 579.6 17.00
106 98.54 466.5 6.77

15x 15 242 (Preprocessing) 155.79
102 8.929 599.5 33.44
104 11.15 580.2 156.49
106 98.84 466.9 50.06

TABLE II
RESULTS AND CPU TIMES FOR Two SQUARE WIRES WITH

THE WEEKS METHOD

Bask Number of Frequency CPU Time
Functions Unknowns (Hz) (mQR/m) (nH~m) (s)

3x3 17 ~oz

104
106

7X7 97 102
104
106

15x 15 449 ~oz
~04
~06

8.929
10.46

118.8
8.929

1L1O
92.60
8.929

11.22
91.80

599.5
586.1
466.9
599.5
581.1
468.5
599.5
580.1
468.1

0.76
0.76
0.75

50.14
49.87
49.43

3684.42
3630.31
3639.78

loo~ 1 I [ I I

10 -

.—..
o
+

Hybrid Technique (1 04)
Surface Int. Tech. (536)
Weeks’ Method (538)
Improved Weeks (1 67)
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Fig, 9. Resistance of three rectangular wires over a ground plane.
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normal derivative on the surface of each wire with the

magnetic vector potential and its normal derivative on the

same surfaces; the resistance and inductance are both

expressed in terms of these surface quantities. This

meth~od is best for high frequencies, when the current is

almost all confined to the surface, and the diffusion

Green’s function (eg. (36)) is very localized. For the

Frequency (Hz)

Fig. 10. Self- and mutual inductances of three rectangular wires over a
ground plane.

middle frequency range, an interpolation between the two
results gives very good accuracy with few basis functions.

The interpolation function was based on the average size

of the conductors, measured in skin depths, and was of

the form 1/(1 + 0.16a2/ 84), where a is the average cross

section of the conductors, and 8 is the skin depth. The

optimization of the interpolation function is an area of
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further research. By

cross-section method

the surface method,

arbitrary conductors.

choosing triangular patches for the

and free-space Green’s functions for

a single program is able to handle

The method is limited at present to

infinite, uniform lines, although nothing theoretically pro-

hibits extension to three-dimensional lines. The theory

behind this method is not necessarily limited to configura-

tions with uniform dielectrics, but problems in the de-

finitions of resistance and inductance, stemming from

difficulties with the extension of current and especially

voltage to non-TEM lines, make such an extension of the

method not immediately obvious. For most practical cases,

however, the effects of nonuniform dielectrics on the

resistance and inductance can be ignored, so that the

method presented in this paper will give quick and accu-

rate results.

APPENDIX

CLOSED-FORM EXPRESSION FOR PARTIAL INDUCTANCES

The problem is to evaluate the integral

I = f~ds,j]~dsim in t (Al)

where r = (x – X’)2 + (Y – Y’)2 and the areas of integra-

tion are the triangular patches (rj) and (km). Using the

fact that In t= V2V’2t 2(ln t– 3)/64, and Green’s first

identity (21)

where the integrals dl,~ and dl~n are over the perimeters

of patches (iii) and (km), respectively, and the normals

point out from the patches. Using the chain rule,

at at 3

( )]
+---m Int–j . (A3)

If the patches are polygons, these integrals over the

perimeters of the wires become just sums of integrals over

pairs of line segments. Therefore, we need to be able to

evaluate this integral where the paths of integration are

arbitrarily oriented line segments. Without loss of gener-
ality, the coordinate system is chosen so that the dl

segment is parallel to the x axis (Fig. 11). In this case, the

various derivatives of t are

t =(u+xt, - XL,–cos~u)2+(y[t– yu –sin@u)2 (A4)

(M)

at at at
—=–cos~—+sin+~
an’ ~YL> 1,

= –2[sin@(u – XC,+ XU) +cos@( y,, – yU) (A6)

(%ZJ=
Fig. 11. Coordinate system for mutual inductance of triangular patches.

and

d2t 8 at

()—=–— — =–2COS4.
dndn’ dyu dn’

(A7)

Letting x = xc – XU and y - yU – yU, the following double

integral over the pair of line segments is obtained:

+(6–41nt)(y+ usin@)

.((u-x)sin@+ycos@) (As)

where t = (u – x –COS @u)2 +(y +sin@u)2. These inte-

grals can be done in closed form [25]. If the length of the

dl segment is a, and that of the dl’ segment is b, the

contribution to (Al) from this pair of line segments is

~(a, b) – ~(a, O)– ~(0, b) + f(O, O). The total is thus the
sum of the contributions from each pair of line segments,

one from the (ij) patch and the other from the (km)

patch.
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