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A Hybrid Method for the Calculation of the
Resistance and Inductance of Transmission
Lines with Arbitrary Cross Sections

Michael J. Tsuk, Member, IEEE, and Jin Au Kong, Fellow, IEEE

Abstract —The frequency-dependent resistance and induc-
tance of uniform transmission lines are calculated with a hybrid
technique that combines a cross-section coupled circuit method
with a surface integral equation approach. The coupled circuit
approach is most applicable for low-frequency calculations, while
the integral equation approach is best for high frequencies. The
low-frequency method consists in subdividing the cross section
of each conductor into triangular filaments, each with an as-
sumed uniform current distribution. The resistance and mutual
inductance between the filaments are calculated, and a matrix is
inverted to give the overall resistance and inductance of the
conductors. The high-frequency method expresses the resistance
and inductance of each conductor in terms of the current at the
surface of that conductor and the derivative of that current
normal to the surface. A coupled integral equation is then
derived to relate these quantities through the diffusion equation
inside the conductors and Laplace’s equation outside. The
method of moments with pulse basis functions is used to solve
the integral equations. An interpolation between the results of
these two methods gives very good results over the entire fre-
quency range, even when few basis functions are used. Results
for a variety of configurations are shown and are compared with
experimental data and other numerical techniques.

1. INTRODUCTION

ITH the ever-increasing speed and density of mod-

QV ern integrated circuits, the need for electromag-
netic wave analysis of phenomena such as the propagation
of transient signals, especially the distortion of signal

pulses, becomes crucial. One of the most important causes
of pulse distortion is the frequency dependence of con-
ductor loss, which can be incorporated into circuit models
for transmission lines as frequency-dependent resistance
and inductance per unit length. Experimental work mea-
suring the resistance and inductance of conductors has
concentrated on circular and rectangular cross sections.
Kennelly et al. [1] did a thorough experimental study,
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which was extended to higher frequencies by Kennelly
and Affel [2]. Haefner’s 1937 paper [3] represents the
most extensive experimental data on the resistance of
rectangular conductors with a wide variety of width-to-
thickness ratios. More recently, Weeks et al. [4] did simi-
lar work as part of a theoretical treatment of the problem.

In terms of theoretical work, the circular conductor was
the first case considered, since it allows an analytical
solution. Maxwell [5] examined nonperiodic current;
Kelvin [6] solved the periodic case. Carson [7] gave a
series solution for the two-wire proximity effect. Cock-
croft [8] used the Schwarz—Christoffel transformation to
obtain a high-frequency approximation to the skin effect
which was expressed in terms of elliptic integrals. Wheeler
[9] discussed the “incremental inductance” rule, which is
a high-frequency estimate of both the skin and proximity
effects. More recently, Casimir and Ubbink {10}, [11]
presented an overview and summary of the basics of the
skin effect, with formulas for the high-frequency limits of
simple cases.

In the “filament technique,” the conductor (usually
rectangular) is divided into a large number of rectangular
filaments, which are considered to have uniform current
distribution within them. Graneau [12] uses a power-series
approach in frequency, which Weeks er al. [4] dispensed
with. Silvester expands the current in a flat conductor [13]
in a series of eigenmodes and the current in a conductor
of arbitrary shape [14] in filaments. In both cases he
ignores the effect of the placement of the return current,
or, in other words, the proximity effect. While these
filament methods tend to be very good for low frequen-
cies, since the current density is then almost uniform, they
do not model singularities of the current density at high
frequencies well.

The other class of methods involves solving the mag-
netic vector potential integral equation [15]-[21]. The
boundary condition is usually on the tangential magnetic
field, specified on a closed contour some distance from
the conductor. The integral equation is solved by tradi-
tional matrix methods, either by expanding the current in
a series of orthogonal eigenfunctions [15]-[18] or by divid-
ing the current into subdomain basis functions [19]-[21].
This method is limited in that it requires knowledge of
the magnetic field outside the conductor somewhere to
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calculate the current distribution inside but does not give
any general way to determine that field. The more recent
work of Cangellaris [22] applies the boundary conditions
developed in the filament approaches to the magnetic
vector potential integral equation, thus removing one of
the principal difficulties of that method; however, it still
requires modeling of the current throughout the cross
section.

In recent years, new methods have been developed
which require modeling the current distribution only on
the surface of the wires, rather than throughout the cross
section. Djordjevi¢ et al. [23] assumed a nonphysical dis-
tribution of current along the propagation direction, which
led to an excess resistance at high frequencies. Their work
was modified by Wu and Yang [24] to allow appropriate
quasi-TEM propagation. However, since both of these
methods depend on the calculation of the normal deriva-
tive of the current density, they have numerical difficul-
ties at low frequencies, when the current is almost uni-
form and the normal derivative is small.

The technique presented in this paper is hybrid cross-
section coupled circuit/surface integral equation ap-
proach. For low frequencies, a filament method based on
the work of Weeks et al. is used, except with triangular
rather than rectangular patches. For high frequencies, a
surface integral equation method is used. However, in
contrast to previous work, the calculation of resistance
and inductance is based on power dissipation-and stored
magnetic energy, rather than on impedance ratios. It will
therefore be more easily extended to structures where
nonuniform propagation can occur. In the middle range
of frequency, an interpolation is made between the results
of the two methods. Since this is a frequency-domain
method, we will assume an e’ dependence to all quan-
tities.

II. Cross-SecrioN CoupLED CIRCUIT METHOD

For low frequencies, we use a two-dimensional cross-
section coupled circuit method to find the resistance and
inductance matrices for multiple transmission lines with
uniform cross sections. We assume that these transmis-
sion lines consist of signal lines over a common return
path or “ground plane.” The matrices R and L are
defined by

¥ o (iwI-R)1

7 (1)

where V is the column vector of the voltage differences
between the wires and a reference wire (ground plane or
return conductor), and I is the column vector of currents
flowing in the wires.

Here is an overview of the cross-section coupled circuit
method. Each conductor is divided into triangular patches
and one of the patches from the return conductor is
chosen to be the reference. The current is assumed uni-
form on the cross section of each patch; in other words, a
piecewise-constant approximation to the actual current
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distribution is used. The resistance and inductance matri-

ces for the patches (7 and [) are then calculated, where
these matrices are defined by

dv 5
p (2)

where v is the column vector of the voltage differences
between the patches and the reference patch, and 1 is the
column vector of currents flowing in the Z direction
through the patches. There are two conditions on the
system: first, that the total current in each wire be the
sum of the currents in the patches and, second, that the
voltage on each patch in a wire be the same, since no
transverse currents are allowed under the quasi-TEM
assumption. Using these conditions, the matrices for the
patches can be reduced to the matrices for the wires.

For the calculation of 7 and I, we follow [4] quite
closely. The elements of the resistance matrix of the
patches are

=(iwi—i=’)'t

1 1
e =——+F
jle, k O'Ajk oA
1

Fik,mn = oA jEm, k#n (3)
where the first subscript indicates the wire, the second
the patch within the wire; 4, is the cross-sectional area
of patch k on wire j, and patch 0 on wire 0 is the
reference of voltage. Also following [4], the elements of
the inductance matrix can be written as the sum of partial

inductances:
!

Jk,mm

=[P ]

Jk,mn

- lg)g)mn + lg)g,)OO (4)

where the partial inductances are given by

lj(lf,)mn = — Zq;lzi—%ffdsjkffds;nn

-ln[(x x4+ (y- y')Z] (5)

where x and y are coordinates on patch jk, and x' and
y' are coordinates on patch mn.

In the Weeks method, the patches over which the
integrals in (5) are done are rectangles, and the quadruple
integral is done quite easily in closed form. However, it is
also possible to evaluate the quadruple integral in closed
form for any polygonal shapes; the details are rather
complex and are left for the Appendix. We therefore use
triangular patches as the most flexible means of modeling
conductors with arbitrary cross sections; polygons are
covered exactly, and we are able to model quite closely
other shapes, such as circles.

Once the resistance and inductance matrices for the
patches have been obtained, we proceed in the following
manner. Taking

dv
dz
The matrix Zz is inverted, and § = z~'. Writing out the

)
7k.00

I

—Z (6)

- [iwi—?] o
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elements of the matrix,

N Ny av,,,
Iy=- ZO Zly,k,mn‘d; (7
e

where N is the number of wires and N, is the number of
patches on wire m. The conditions on v and u discussed
above are applied, to give

|4

N d
I[=- Y Y, —— 8
i=m X Yy, (8)

where V and I are the voltage and current column vectors
for the wires and where

NN,
Y;mz 2 Z y}k.mn' (9)
_ k=1n=1
Inverting Y gives
Y 1=R-ioL. (10)

Thus, the frequency-dependent resistance and inductance
matrices for the wires have been obtained.

In [4], the distribution of patches was a function of
frequency; as the frequency increased, the patches were
concentrated at the edges, where the current is. However,
as shall be shown, it is more efficient to switch to a
surface integral equation technique for high frequencies;
in this paper the distribution of triangular patches is not
altered as the frequency is increased. This has the advan-
tage that, since the resistance and inductance matrices of
the patches are independent of frequency, 7 and / need
be calculated only once, no matter for how many frequen-

cies we wish to calculate R and L.

II1. DiFrerRENTIAL EQUATIONS AND
Bounpary CONDITIONS

In this section, the basic equations and boundary condi-
tions which will be used in the surface-integral equation
method will be derived. The coordinate system used is
shown in Fig. 1. We will rely heavily on quasi-TEM
assumptions. First, outside the wires, we assume that the
fields are transverse, and that they obey Laplace’s equa-
tion. In other words, Maxwell’s equations outside the
wires become

VXH=0 (11)

V-H=0 (12)

where V here is only the transverse operator, £9 /dx +

yd /dy. The vector magnetic potential, A4, is defined such

that uH =V X A. By the quasi-TEM assumption, J = ZJ,
and A= ZA4,, and it can be shown that

V24, =0. (13)

Also, inside the conductors, the displacement current is
ignored; Maxwell’s equations become

VXE=iopH (14)
VXH=J (15)
V-H=0. (16)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

Fig. 1. Coordinate system for surface integral equation method.

Using J = o E, this reduces to

Vi, +iopol,=0. (17)

There are two boundary conditions at the interface of
the conductors and free space: the continuity of tangen-
tial H and of normal B =u H. If H outside is expressed
in terms of A,, and H inside in terms of J,, the condition
on H reduces to

aJ, 94,

— =ilwo—— (18)

an an
which is satisfied along all the conductor—free space in-
terfaces. The boundary condition on normal B is more
difficult. Assuming that all the materials have the same
permeability,

aJ

z z

oA
3[ =lwr al .

(19)

If the derivatives of two quantities along a line are equal,
then those quantities must be equal, to within a constant:

Jz=iw0'[AZ—Aq]. (20)

A, is constant over a single conductor, but can vary from
conductor to conductor.
Finally, it is necessary to be able to specify the total
current flowing on a wire. Using Green’s first identity,
oY
fde(d)sz// + V-V =¢dl¢a—

n

(21)

where dS is a two-dimensional integral over a cross-sec-
tional area, and d/ is a one-dimensional integral along the
closed contour bounding that area. Also, the normals are
defined as pointing out from the region of interest. With
¢ =J, and ¢ =1, and considering (17),

i i
1=[deJz=w—#;[fdsszz=w—M;ngl

which is an expression for the total current flowing in a

z

aJ 2
(22
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wire in the Z direction in terms of quantities on the
surface.

IV. DeTERMINATION OF CIRCUIT PARAMETERS

Eventually, the quantities of interest are the resistance
and inductance per unit length of these conductors. It
turns out that it is possible to express these quantities in
terms of the current and its normal derivative on the
surface of the wires. This is useful, because it means that
the problem can be formulated in terms of a set of
coupled integral equations involving only these surface
quantities, allowing a great savings in computation. The
resistances and inductances will be derived through power
and energy considerations.

For the resistance, consider a case with a current [
flowing in a signal wire and returning in a reference, for
example a ground plane. Starting with the power defini-
tion of resistance,

j[dSE IF fde!Jf

= — 23)
”, |fdeJZ|2 (

a IfdeJZIZ

where the integration in the numerator is over all wires,
while that in the denominator is only over the signal wire.
The numerator can be put in a more useful form, using
(21) with ¢ =J, and ¢ = J¥, and its complex conjugate,
together with (17) to get

[ [asir.r =fdeJsz*

1
2 wuo

[de[J*VZJ VAL
1 i

dl|\J* i JaJ;‘<
_Ea)/.u)'96 Z dn Z on

1 aJF
. dum{f_ }
)

U

(24)

Including the total current squared, |7]%, from (22),

ar*

96 dl Im{ }
all wires 3
P

% dl—=

1gnal wire

R=owpu (25)

Similarly, starting with a magnetic stored energy defini-
tion of inductance per unit length, L:

aw,,  [{dSH-H*

VR 112

=pu (26)

where the range of integration for the numerator is over
all space. Using a technique similar to that for (25),
combining the contributions from regions inside and out-
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side the wires,

¢

all wires

aJF
dl Re{iwo-Aq——}

on
L=—

m (27)

95_ dl ==

signal wire

The mutual resistance and inductance are calculated
from energy considerations, and from the self terms calcu-
lated above. If we specify a current I, to flow on line i,
and — ], to flow on line j, we can calculate the power
dissipated, P,, and the stored magnetic energy, W,,, very
easily by the above technique. This gives

1 2
R, = —2—(R +R;—4P, /1) (28)
and
1 , w
Lij=5(Lo+L,=8W,/I%). (29)

V. DeErivaTiON OF CoUPLED INTEGRAL EQuUATIONS

In order to complete the formulation, integral equa-
tions are required which relate A, to 34, /dn outside the
wires and J, to 4J, /on inside the wires. Starting from
Green’s theorem:

[ [ ds' 6V - y2¢) = par (d)l —¥ ) (30)
where the integral dS’ is over a cross-sectional region, the
integral dl’ is over the contour bounding that region, and
the normals point out from the region of interest. In
general, let W(p) be either A, or J,, where p is position
in the two-dimensional cross section. Since ¥(p) satisfies
V¥ + C¥ =0, where C =0 for Laplace’s equation and
C =iwuo for the diffusion equation, a Green’s function,
G(p,p"), can be found which satisfies V?G + CG =
~ 8(p — p'). Substituting ¥ for  and G for ¢ in (30),

fde"I’(p’)é(p -p)

=96dl'[G(p,p'>

The integral equation will be formulated on the surface,
so both p and p' are on the surface. This places 3(p — p")
just on the boundary of the dS’ integration, and this must
be treated carefully. The most straightforward method is
that integrating a delta function that lies on the edge of
the range of integration gives 1/2. With this,

(l)

(p p)

¥(p) ,
o~ Y)Y — 1] ()

gsdl G(ll)
| 2EED 151 I fsé
=¢d1\p(1)[7+5 (-] (32)

Integral equations for both A4, and J, can now be
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obtained. For the outer equation (13),

95 le(zz) ()

all wires

oG, (1,1
on'

- dl’AZ(l’)[ - %5(1— z')] (33)

all wires

where

1 2 2
Go(09) == 5= [V (x =)+ (v =¥V | (39

and where the sign change in (33) is due to the normals
pointing into the region of interest. The range of integra-
tion is over the boundary of the free-space region, in
other words, over the surface of every wire.

Similarly, for the inner equation (17), for each wire,

93 dl'G,(L,1" Z( )

wire g

wire g

dl'Jz(z')[i@;—nl,’—l2 + %5(1 - 1’)} (35)

where

G.(p.0) = HP (e amo v (x )+ (v - )’
—errm\/(x ~x)+(y=y)

—ikeiyopo \/(x - x’)2+(y - y’)Z] (36)

where “ker” and “kei” are the real and imaginary Kelvin
functions. This equation applies to each wire separately;
the range of integration is over the surface of that wire.
Using the boundary conditions (18) and (20) to elimi-
nate A4, from the integral equation for the outside fields
and add the condition on the total currents from (22),

) ( ) _ dr’
all wires all wires
aG,(L,I) 1
‘[Jz(l’)—{-io)O'Aq] T—Es(l—l') (37)
¢ Gl 1) _gﬁ 'y (I
wire g wire g
0GA1,1)
I *5(1—1) (38)
aJ,
¢ dl—=—wuol,. (39)
wire g n

There is one important thing to note about these inte-
gral equations. Contrary to simpler clectrostatic prob-
lems, the boundary conditions are neither Dirichlet nor
Neumann; both G and dG /dn' must be kept in the
equations. Because of this, the formulation is in terms of
the free-space Green’s functions for Laplace’s equation
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and the diffusion equation, (34) and (36). All information
about the boundaries is contained in the paths of integra-
tion.

VI. SorutioN oF CouPLED INTEGRAL EQUATIONS

We solve these coupled integral equations, (37), (38),
and (39), by the method of moments with subdomain basis
functions. Expanding the unknown functions J, and
dJ, /dn as the sum of known functions times unknown
coefficients,

J. = LimBu(1) (40)

aJ

Z=Yk,B,(]). 41
n = ZhnBa(0) (41)
Simple pulse basis functions are used, normalized so that
the integral is unity:

B.(0={ /"

This gives a piecewise-constant approximation to the sur-
face quantities. The same functions are used for testing,
thereby implementing Galerkin’s method.

It turns out that, for high frequencies, the current
distribution on a wire is similar to the charge distribution
on a perfect conductor. For polygonal wires, this means
that the current will be concentrated at the corners.
Therefore, we find it advantageous to concentrate the
basis functions in the same way. For three basis functions
on a side, for example, the two in the corners are each
one eight the length of the side; the center one, three
quarters. These values were determined empirically, by
seeing which division gave results closest to those for a
large number of basis functions.

We can thus approximate the coupled integral equation
as a matrix equation:

ifl,<l<l,
otherwise.

+A, (42)

V; I/Vo Uo K 0
5 0 o ||iwd|=|-iopal| (43)
P oo O J 0

where J is the vector of the unknown j,’s (current), K is
the vector of the unknown k,’s (normal derivative of the
current), and 4, is the vector of the A4.’s (constants of
vector potential). The total currents on each wirc arc
specified by the vector 1. The matrices V,, W,, U,, S, V,
and U, arise from integrals of products of the Green’s
functions with the basis functions and are completely
known. The solution of this matrix equation by LU de-
composition provides us with an approximation for J, and
dJ, /dn, and through (25) and (27), R and L. Since the
outer matrices ¥,, U,, W,, and §, are independent of
frequency, they only need to be calculated once. We can
make use of this fact by LU-decomposing this part of the
large matrix only once, completing the decomposition
with the rest of the matrix for each value of frequency.
For the pulse basis functions used, the outer matrices can



TSUK AND KONG: A HYBRID METHOD FOR THE CALCULATION OF RESISTANCE AND INDUCTANCE
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Fig. 2. Resistance of isolated square wire.

be expressed in closed form. The inner matrices, V; and
U, have, at worst, double numerical integrals, and for the
case of the interaction between elements which lie on the
same line, these can be expressed in closed form. Also, at
high frequencies, owing to the highly local nature of the
diffusion Green’s function (36), which results from the
rapidly decaying asymptotic nature of the Kelvin func-
tions, only the neighboring patches have an appreciable
interaction; those integrals can be calculated quite rapidly.

VII. RESULTS

In these results, we will compare the hybrid method,
described above, with experimental results, as well as with
two other methods: the Weeks method [4], which models
the current throughout the cross section, and the work of
Djordjevié et al. [23], which models an equivalent current
only on the surface over all frequencies. As shall be seen,
by using a hybrid method, we can avoid the weaknesses of
both of these methods.

First, we consider the example of an isolated square
conductor, 4.62 mm on a side, with conductivity o = 5.72
X107 (€ —m)~!. While the inductance per unit length is
undefined, the hybrid method can be used to calculate
the resistance per unit length and for comparison with the
experimental results of Haefner [3] and the results ob-
tained by using the Weeks method [4]. As can be seen
(Fig. 2), the fit for the new method is quite good. In this
example, only 12 basis functions (25 unknowns) were
used. three on a side. By comparison, the Weeks method
with 49 basis functions does not give as good a result.

The next example is that of two parallel circular wires,
o =1584%10" (Q —m)~l. The wires have a diameter of
11.66 mm, and a separation of 0.3 mm and 8 mm for the
two cases. Here, the circles were modeled as n-sided
polygons having the same cross-sectional area. In Figs. 3
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Fig. 3. Resistance of two circular wires.
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Fig. 4. Inductance of two circular wires.

and 4, the results for 13 basis functions per circle (54
unknowns) are shown, compared with the experimental
results of Kennelly et al. [1]. The fit is again quite good
with the experimental results. Since the Weeks method is
limited to rectangular elements, it is not capable of han-
dling this case.

Next, we take the example of two parallel rectangular
wires, o = 5.6 X107 (0 —m)~1; the configuration is shown
in Fig. 5. In Figs. 6 and 7, we compare the hybrid method,
the Weeks method, and the results from [23] calculated
from a purely surface integral equation approach. It can
be seen that the hybrid method agrees with each of the
others in its range of validity. Also, the numerical instabil-
ity of purely surface-integral equation methods in calcu-
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Fig. 5. Two rectangular wires.
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Fig. 6. Resistance of two rectangular wires.

lating the low-frequency inductance can be observed. It is
also clear that the hybrid method in general requires
fewer basis functions, and thus less computation time,
than the Weeks method. In fact, as the frequency in-
creases and the conductors become many skin depths
across, cven a large number of basis functions in the
Weeks method leaves us with a significant error. This is
due to the inability of the Weeks method to correctly
model the distribution of current along the surface, which
is crucial to the calculation of resistance at such frequen-
cies. Tables I and II compare the results of the hybrid
method with the Weeks method for the case of two
square wires, including CPU times, on a Digital Equip-
ment Corporation VAXstation 3500, running VMS. As
can be seen, the cost of the hybrid method in terms of
CPU time is much lower than the Weeks method for
anything more than a moderate number of basis func-
tions, and especially for high frequencies.

Finally, we consider the case of three rectangular con-
ductors over a ground plane, o = 5.81x107 (Q —m)~ L
The configuration is shown in Fig. 8, the resistance of the
first line in Fig. 9, and the self- and mutual inductances in
Fig. 10. Since our method is not capable of modeling an
infinite ground plane (since imaging is very difficult with
an imperfect conductor), a very large conductor was used,
4 mm by 0.5 mm, in its place, with more basis functions
concentrated in the area under the signal lines. We com-
pare with the Weeks method and with a purely surface
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Fig. 7. Inductance of two rectangular wires.
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Fig. 8. Three rectangular wires over a ground plane.

integral equation result, both with a large number of basis
functions. The same trend can be seen as in the previous
case, but there is now a large error in the high-frequency
inductance, as predicted by the Weeks method. This is
due to the fact that the Weeks method does not model
the concentration of the current on the ground plane
under the signal lines, since at high frequencies most of
the patches are concentrated at the corners of the ground
plane, far away from the current. If one improves the
Weeks method by restricting the majority of basis func-
tions to be under the signal lines, one gets results which
agree with the hybrid method quite closely.

VIII. CoNCLUSIONS

A technique has been developed to calculate the skin
effect resistance and inductance of transmission lines with
arbitrary cross sections. This technique provides accurate
answers over a wide range of frequencies, including the
range where neither low-frequency (direct current, uni-
form distribution) nor high-frequency (skin depth) ap-
proximations are valid. The technique is a hybridization
of two distinct methods. The first is a cross-section cou-
pled circuit approach, subdividing the wires into triangu-
lar patches which are assumed to have uniform current
distribution. This method is best for low frequencies,
when the physical current has very little variation across
the cross section. The second method is in terms of a
coupled integral equation, linking the current and its

1
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TABLE 1
ResuLts aAND CPU TiMES FOR TwWo SQUARE WIRES WITH
Hysrib METHOD

Basis Number of Frequency R L CPU Time
Functions Unknowns (Hz) mO/m) (H/m) )
3Ix3 50 (Preprocessing) 12.99
102 8.929 599.5 1.35
104 11.07 5717 3.36
10¢ 94.76 466.6 1.24
7X7 114 (Preprocessing) 19.16
102 8.929 599.5 1.37
10* 11.13 579.6 17.00
10° 98.54 466.5 6.77
15% 15 242 (Preprocessing) 155.79
102 8.929 599.5 33.44
104 11.15 580.2 156.49
108 98.84 466.9 50.06
TABLE II

Resurts anD CPU TiMES FOR Two SQUARE WIRES WITH
THE WEEKS METHOD

Basis Number of Frequency
Functions Unknowns (Hz)
3X3 17 10?2
104
106
TX7 97 102
10*
10°
15x 15 449 © 102
10*
10°
100 T T T —T T ]
i 1
| —— Hybrid Technique (104) .
- -—-- Surface Int. Tech. (536) 1
] O Weeks' Method (538) ]
+  Improved Weeks (167)
G
~N
S 10f -
- r 1
m - -
- 1
1 1 i [l | .
1000 10* 10® 10 10’7 10®  10°

Frequency (Hz)

Fig. 9. Resistance of three rectangular wires over a ground plane.

normal derivative on the surface of each wire with the
magnetic vector potential and its normal derivative on the
same surfaces; the resistance and inductance are both
expressed in terms of these surface quantities. This
method is best for high frequencies, when the current is
almost all confined to the surface, and the diffusion
Green’s function (eg. (36)) is very localized. For the

R L CPU Time
(mQ /m) (nH/m) Q)
8.929 599.5 0.76
10.46 586.1 0.76
118.8 466.9 0.75
8.929 599.5 50.14
11.10 581.1 49.87
92.60 468.5 49.43
8.929 599.5 3684.42
11.22 580.1 3630.31
91.80 468.1 3639.78
1000 T T T T T
——— Ly4: Hybrid Tech. (104
r - — Ly,t Hybrid Tech. (104 ]
--—- Lyy: Surf.nt.Tech. 2536;
o -+ L4y Surf.int.Tech. (536 1
X Ly Weeks' Method (538
_ L + L, Weeks' Method (538) |
E O L,;: improved Weeks 2167;
I | O L, Improved Weeks (167)]
c
~ X X X x x
o~ X
7 500 E
T
C
o] ( 1
i r gﬂ_]" ]
. .
\"”3\& + + T ]
" +
Bt
- -8 — -8 1
O 1 ] (I ! 1
1000 10*  10®  10® 107 10®  10°

Frequency (Hz)

Fig. 10. Self- and mutual inductances of three rectangular wires over a
ground plane.

middle frequency range, an interpolation between the two
results gives very good accuracy with few basis functions.
The interpolation function was based on the average size
of the conductors, measured in skin depths, and was of
the form 1/(1+0.16a?/8*), where a is the average cross
section of the conductors, and & is the skin depth. The
optimization of the interpolation function is an area of



1346

further research. By choosing triangular patches for the
cross-section method and free-space Green’s functions for
the surface method, a single program is able to handle
arbitrary conductors. The method is limited at present to
infinite, uniform lines, although nothing theoretically pro-
hibits extension to three-dimensional lines. The theory
behind this method is not necessarily limited to configura-
tions with uniform dielectrics, but problems in the de-
finitions of resistance and inductance, stemming from
difficulties with the extension of current and especially
voltage to non-TEM lines, make such an extension of the
method not immediately obvious, For most practical cases,
however, the effects of nonuniform dielectrics on the
resistance and inductance can be ignored, so that the
method presented in this paper will give quick and accu-
rate results.

APPENDIX
CrLoseD-ForM EXPRESSION FOR PARTIAL INDUCTANCES

The problem is to evaluate the integral

1={fas, [ [dSi,Int

where t=(x — x')? +(y — ¥)? and the areas of integra-
tion are the triangular patches (if) and (km). Using the
fact that Int=V2V?t*(Int —3)/64, and Green’s first
identity (21)

6495(11,,55(1 on -

where the integrals d/,, and dl}(m are over the perimeters
of patches (if) and (km), respectively, and the normals
point out from the patches. Using the chain rule,

8%t 5
- 95dl”96dlkm[——a—n,t(lnt - 5)

at ot

+£a—n,(lnl—%”. (A3)

(A1)

[ t(lnt=3)]  (A2)

If the patches are polygons, these integrals over the
perimeters of the wires become just sums of integrals over
pairs of line segments. Therefore, we need to be able to
evaluate this integral where the paths of integration are
arbitrarily oriented line segments. Without loss of gener-
ality, the coordinate system is chosen so that the dl
segment is parallel to the x axis (Fig. 11). In this case, the
various derivatives of ¢ are

t=(u+x”—xu—cosdw)an(yu—yu—sindw)2 (A4)
at at

3£=~5;;=2(yu—yu+sin¢:v) (AS)
at a o
5;=—cos¢5]:+sm¢a:

—2[sin(u— x, + x,) +cos d(y, — y,) (A6)
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((I:q,, y'v)
o e ——
(Tusyu) U
Fig. 11. Coordinate system for mutual inductance of triangular patches.
and
0%t a (ot 2008 6 A7)
=~——|—=]=—2cos .
ondn' dy, \ on' (

Letting x =x_— x, and y =y, — y,, the following double
integral over the pair of line segments is obtained:

flu,v) =%fdufdvt(5—21nt)cosqb
+(6—4Int)(y + vsing)
“((u—x)sing + ycos ¢) (A8)

where ¢ =(u— x —cos ¢pv)? +(y +sin ¢pv)>. These inte-
grals can be done in closed form [25]. If the length of the
dl segment is a, and that of the d!’ segment is b, the
contribution to (Al) from this pair of line segments is
fla,b)— f(a,00— f(0,b)+ £(0,0). The total is thus the
sum of the contributions from each pair of line segments,
one from the (/) patch and the other from the (km)
patch.
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